177 research outputs found

    Imaging faint brown dwarf companions close to bright stars with a small, well-corrected telescope aperture

    Get PDF
    We have used our 1.6 m diameter off-axis well-corrected sub-aperture (WCS) on the Palomar Hale telescope in concert with a small inner-working-angle (IWA) phase-mask coronagraph to image the immediate environs of a small number of nearby stars. Test cases included three stars (HD 130948, HD 49197 and HR7672) with known brown dwarf companions at small separations, all of which were detected. We also present the initial detection of a new object close to the nearby young G0V star HD171488. Follow up observations are needed to determine if this object is a bona fide companion, but its flux is consistent with the flux of a young brown dwarf or low mass M star at the same distance as the primary. Interestingly, at small angles our WCS coronagraph demonstrates a limiting detectable contrast comparable to that of extant Lyot coronagraphs on much larger telescopes corrected with current-generation AO systems. This suggests that small apertures corrected to extreme adaptive optics (ExAO) levels can be used to carry out initial surveys for close brown dwarf and stellar companions, leaving followup observations for larger telescopes.Comment: accepted for publication in the Astrophysical Journa

    Improving Interferometric Null Depth Measurements using Statistical Distributions: Theory and First Results with the Palomar Fiber Nuller

    Get PDF
    A new "self-calibrated" statistical analysis method has been developed for the reduction of nulling interferometry data. The idea is to use the statistical distributions of the fluctuating null depth and beam intensities to retrieve the astrophysical null depth (or equivalently the object's visibility) in the presence of fast atmospheric fluctuations. The approach yields an accuracy much better (about an order of magnitude) than is presently possible with standard data reduction methods, because the astrophysical null depth accuracy is no longer limited by the magnitude of the instrumental phase and intensity errors but by uncertainties on their probability distributions. This approach was tested on the sky with the two-aperture fiber nulling instrument mounted on the Palomar Hale telescope. Using our new data analysis approach alone-and no observations of calibrators-we find that error bars on the astrophysical null depth as low as a few 10-4 can be obtained in the near-infrared, which means that null depths lower than 10-3 can be reliably measured. This statistical analysis is not specific to our instrument and may be applicable to other interferometers

    Mid-infrared laser light nulling experiment using single-mode conductive waveguides

    Full text link
    Aims: In the context of space interferometry missions devoted to the search of exo-Earths, this paper investigates the capabilities of new single mode conductive waveguides at providing modal filtering in an infrared and monochromatic nulling experiment; Methods: A Michelson laser interferometer with a co-axial beam combination scheme at 10.6 microns is used. After introducing a Pi phase shift using a translating mirror, dynamic and static measurements of the nulling ratio are performed in the two cases where modal filtering is implemented and suppressed. No additional active control of the wavefront errors is involved. Results: We achieve on average a statistical nulling ratio of 2.5e-4 with a 1-sigma upper limit of 6e-4, while a best null of 5.6e-5 is obtained in static mode. At the moment, the impact of external vibrations limits our ability to maintain the null to 10 to 20 seconds.; Conclusions: A positive effect of SM conductive waveguide on modal filtering has been observed in this study. Further improvement of the null should be possible with proper mechanical isolation of the setup.Comment: Accepted in A&A, 7 pages, 5 figure

    Extreme adaptive optics imaging with a clear and well-corrected off-axis telescope sub-aperture

    Get PDF
    Rather than using an adaptive optics (AO) system to correct a telescope s entire pupil, it can instead be used to more finely correct a smaller sub-aperture. Indeed, existing AO systems can be used to correct a sub-aperture 1/3 to 1/2 the size of a 5-10 m telescope to extreme adaptive optics (ExAO) levels. We discuss the potential performance of a clear off-axis well-corrected sub-aperture (WCS), and describe our initial imaging results with a 1.5 m diameter WCS on the Palomar Observatory s Hale telescope. These include measured Strehl ratios of 0.92-0.94 in the infrared (2.17 microns), and 0.12 in the B band, the latter allowing a binary of separation 0.34 arc sec to be easily resolved in the blue. Such performance levels enable a variety of novel observational modes, such as infrared ExAO, visible-wavelength AO, and high-contrast coronagraphy. One specific application suggested by the high Strehl ratio stability obtained (1%) is the measurement of planetary transits and eclipses. Also described is a simple dark-hole experiment carried out on a binary star, in which a comatic phase term was applied directly to the deformable mirror, in order to shift the diffraction rings to one side of the point spread function.Comment: accepted by Ap

    Are dust shell models well-suited to explain interferometric data of late-type stars in the near-infrared?

    Full text link
    Recently available near-infrared interferometric data on late-type stars show a strong increase of diameter for asymptotic giant branch (AGB) stars between the K (2.0 - 2.4 \mu m) and L (3.4 - 4.1 \mu m) bands. Aiming at an explanation of these findings, we chose the objects \alpha Orionis (Betelgeuse), SW Virginis, and R Leonis, which are of different spectral types and stages of evolution, and which are surrounded by circumstellar envelopes with different optical thicknesses. For these stars, we compared observations with spherically symmetric dust shell models. Photometric and 11 \mu m interferometric data were also taken into account to further constrain the models. -- [...] -- We conclude that AGB models comprising a photosphere and dust shell, although consistent with SED data and also interferometric data in K and at 11 \mu m, cannot explain the visibility data in L; an additional source of model opacity, possibly related to a gas component, is needed in L to be consistent with the visibility data.Comment: 12 pages, 4 figures, to be published in A&A; Latex aa class, uses packages graphicx, hyperref, natbib, and txfonts; keywords: Techniques: interferometric -- Radiative transfer -- Circumstellar matter -- Infrared: stars -- Stars: late-type -- Stars: individual: \alpha Orionis, SW Virginis, R Leoni

    Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    Get PDF
    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 μ\mum). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feedforward approach to stabilize the path length fluctuations seen by the LBTI nuller.Comment: SPIE conference proceeding

    Co-phasing the Large Binocular Telescope: status and performance of LBTI/PHASECam

    Get PDF
    The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 um). PHASECam is LBTI's near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).Comment: 8 pages, 5 figures, SPIE Conference proceeding

    L'-band AGPM vector vortex coronagraph's first light on LBTI/LMIRCam

    Get PDF
    We present the first observations obtained with the L'-band AGPM vortex coronagraph recently installed on LBTI/LMIRCam. The AGPM (Annular Groove Phase Mask) is a vector vortex coronagraph made from diamond subwavelength gratings. It is designed to improve the sensitivity and dynamic range of high-resolution imaging at very small inner working angles, down to 0.09 arcseconds in the case of LBTI/LMIRCam in the L' band. During the first hours on sky, we observed the young A5V star HR\,8799 with the goal to demonstrate the AGPM performance and assess its relevance for the ongoing LBTI planet survey (LEECH). Preliminary analyses of the data reveal the four known planets clearly at high SNR and provide unprecedented sensitivity limits in the inner planetary system (down to the diffraction limit of 0.09 arcseconds).Comment: 9 pages, 4 figures, SPIE proceeding

    Modal Filtering for Nulling Interferometry-First Single-Mode Conductive Waveguides in the Mid-Infrared

    Full text link
    This paper presents the work achieved for the manufacturing and characterization of first single-mode waveguides to be used as modal filters for nulling interferometry in the mid-infrared range [4-20 um]. As very high dynamic range is mandatory for detection of Earth-like planets, modal filtering is one of the most stringent instrumental aspects. The hollow metallic waveguides (HMW) presented here are manufactured using micro-machining techniques. Single-mode behavior has been investigated in laboratory through a technique of polarization analysis while transmission features have been measured using flux relative comparison. The single-mode behavior have been assessed at lambda=10.6 um for rectangular waveguides with dimensions a=10 um and b<5.3 um with an accuracy of ~2.5 %. The tests have shown that a single-polarization state can be maintained in the waveguide. A comparison with results on multi-mode HMW is proposed. Excess losses of 2.4 dB (~ 58 % transmission) have been measured for a single-mode waveguide. In particular, the importance of coupling conditions into the waveguide is emphasized here. The goal of manufacturing and characterizing the first single-mode HMW for the mid-infrared has been achieved. This opens the road to the use of integrated optics for interferometry in the mentioned spectral range.Comment: 10 pages, 6 figures, accepted in A&
    corecore